Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Pathogens ; 11(10)2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2099690

ABSTRACT

Despite extensive vaccination and booster programs, SARS-CoV-2 outbreaks in long-term care facilities (LTCF) continue to occur. We retrospectively describe a SARS-CoV-2 outbreak amongst a partially vaccinated LTCF population in The Netherlands which occurred in March 2021. The facility comprised three floors functioning as separate wards. Nasopharyngeal swabs for SARS-CoV-2 qRT-PCR were obtained from residents and staff presenting with COVID-19-like symptoms and from all residents and staff during two point prevalence screenings (PPS). Samples meeting technical criteria were included for phylogenetic analysis. Positive SARS-CoV-2 qRT-PCR were obtained from 11 (18%) of 61 residents and 8 (7%) of 110 staff members between March 8 and March 25. Seven (37%) cases and five (63%) vaccinated cases were diagnosed through PPS. Cases were found on all wards. Phylogenetic analysis (n = 11) showed a maximum difference of four nucleotides between sequences on the outer branches of the tree, but identified two identical sequences on the root differing maximum two nucleotides from all other sequences, suggesting all did belong to the same cluster. Our results imply that PPS is useful in containing SARS-CoV-2 outbreaks amongst (vaccinated) LTCF populations, as an entire LTCF might behave as a single epidemiological unit and it is preferable to maximize the number of samples included for phylogenetic analysis.

2.
Clin Microbiol Infect ; 28(5): 695-700, 2022 May.
Article in English | MEDLINE | ID: covidwho-1340599

ABSTRACT

OBJECTIVES: To evaluate the performance of nasal mid-turbinate self-testing using rapid antigen detection tests (RDT) for persons with suspected coronavirus disease 2019 (COVID-19) in the community. Self-testing for COVID-19 infection with lateral flow assay severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RDT, provides rapid results and could enable frequent and extensive testing in the community, thereby improving the control of SARS-CoV-2. METHODS: Participants visiting a municipal SARS-CoV-2 testing centre, received self-testing kits containing either the BD Veritor System (BD-RDT) or Roche SARS-CoV-2 antigen detection test (Roche-RDT). Oro-nasopharyngeal swabs were collected from the participants for quantitative RT-PCR (qRT-PCR) testing. As a proxy for contagiousness, viral culture was performed on a selection of qRT-PCR positive samples to determine the Ct-value at which the chance of a positive culture dropped below 0.5 (Ct-value cut-off). Sensitivity and specificity of self-testing were compared to qRT-PCR with a Ct-value below the Ct value cut-off. Determinants independently associated with a false-negative self-test result were determined. RESULTS: A total of 3201 participants were included (BD-RDT n = 1595; Roche-RDT n = 1606). Sensitivity and specificity of self-testing compared with the qRT-PCR results with a Ct-value below the Ct-value cut-off were 78.4% (95% CI 73.2%-83.5%) and 99.4% (95% CI 99.1%-99.7%), respectively. A higher age was independently associated with a false-negative self-testing result with an odds ratio of 1.024 (95% CI 1.003-1.044). CONCLUSIONS: Self-testing using currently available RDT has a high specificity and relatively high sensitivity to identify individuals with a high probability of contagiousness.


Subject(s)
COVID-19 , Antigens, Viral/analysis , COVID-19/diagnosis , COVID-19 Testing , Humans , SARS-CoV-2/genetics , Self-Testing , Sensitivity and Specificity
3.
Diagn Microbiol Infect Dis ; 101(2): 115392, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1198686

ABSTRACT

Real-time reverse transcription-polymerase chain reaction (RT-PCR) on upper respiratory tract (URT) samples is the primary method to diagnose SARS-CoV-2 infections and guide public health measures, with a supportive role for serology. We reinforce previous findings on limited sensitivity of PCR testing, and solidify this fact by statistically utilizing a firm basis of multiple tests per individual. We integrate stratifications with respect to several patient characteristics such as severity of disease and time since onset of symptoms. Bayesian statistical modelling was used to retrospectively determine the sensitivity of RT-PCR using SARS-CoV-2 serology in 644 COVID-19-suspected patients with varying degrees of disease severity and duration. The sensitivity of RT-PCR ranged between 80% - 95%; increasing with disease severity, it decreased rapidly over time in mild COVID-19 cases. Negative URT RT-PCR results should be interpreted in the context of clinical characteristics, especially with regard to containment of viral transmission based on 'test, trace and isolate'. Keywords: SARS-CoV-2, RT-PCR, serology, sensitivity, public health.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Aged , Aged, 80 and over , Bayes Theorem , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Serological Testing , Contact Tracing , False Negative Reactions , Female , Humans , Male , Middle Aged , Netherlands/epidemiology , Quarantine , Retrospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sensitivity and Specificity , Severity of Illness Index
4.
J Clin Virol ; 135: 104720, 2021 02.
Article in English | MEDLINE | ID: covidwho-1002741

ABSTRACT

BACKGROUND: Apart from major health concerns associated to the SARS-coronavirus-2 (SARS-CoV-2) pandemic, also the diagnostic workflow encountered serious problems. Limited availability of kit components, buffers and even plastics has resulted in suboptimal testing procedures worldwide. Alternative workflows have been implemented to overcome these difficulties. Recently a liquid based sample prep has been launched as solution to overcome limitations in relation to nucleic acid extraction. OBJECTIVE: Multicenter evaluation of the QIAprep& Viral RNA UM kit (QIA P&A) for rapid sample preparation and real-time PCR detection of SARS-CoV-2 in comparison to standardized laboratory testing methods. STUDY DESIGN: Selected samples of the routine diagnostic workflow at Clinical Microbiology Laboratories of four Dutch hospitals have been subjected to the rapid QIA P&A protocol and the results have been compared to routine diagnostic data. RESULTS: Combining results of manual and automated procedures, a total of 377 clinical samples of which 202 had been tested positive with a wide range of CT values, showed almost complete concordance in the QIA P&A assay for samples up to CT values of 33 with one exception of CT 31. Prospectively 60 samples were tested and also showed 100 % concordance with 5 positives. The method has been automated by two centres. CONCLUSIONS: Despite an input of only 8 µL of clinical sample, the QIA P&A kit showed good performance for sample preparation and amplification of SARS-CoV-2 and can contribute as a rapid molecular testing strategy in managing the CoV-2 pandemic.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/virology , Mass Screening/methods , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Clinical Laboratory Techniques/methods , Humans , Molecular Diagnostic Techniques/methods , Pandemics/prevention & control , Prospective Studies , Specimen Handling/methods , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL